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SUMMARY

An analytical procedure is described for designing smooth transition surfaces
for blended wing-body configurations. Starting from two specified cross-section
shapes, the procedure generates a gradual transition from one cross—-section shape to
the other as an analytic blend of the two shapes. The method utilizes a conformal
mapping, with subsequent translation and scaling, to transform the specified end
shapes to curves that can be combined more smoothly. A sample calculation is applied
to a blended wing-body missile-type configuration with a top~mounted inlet.

INTRODUCTION

The construction of aerodynamic configurations requires a detailed numerical
description in the form of position coordinates of the surface points. Often these
coordinates are read from drawings of the configuration cross sections on graph
paper. As a general rule, certain of the cross—-section shapes are closely determined
by the requirement for packaging internal equipment of a given shape, or by the pres-
ence of a jet inlet or exhaust, or by some similar condition. The intermediate
cross—-section shapes, between those that are thus determined, are usually obtained by
making a smooth transition between the predetermined cross sections. When this tran-
sition is performed by hand lofting, it becomes tedious and time-consuming.

For some types of configurations or configuration components, however, a com-
puter can be utilized to compute the transition shapes. Reference 1 describes a
procedure for computing transition cross—-section shapes for forebodies. The method
of reference 1, however, treats only cross-section shapes that are single valued when
expressed in polar coordinates; thus, it is not applicable to more general design
problems.

The present procedure, however, treats the problem of computing cross-section
shape transitions for a class of wing-body configurations. It is not intended to
perform the same function as a general geometry program, such as that described in
reference 2. Such a general geometry program utilizes point-to-point fairing, which
is usually by means of low-order polynomials. In essence, it can be used to approxi-
mate the geometry of a given configuration, and to display rapidly the geometric
effects of altering individual point locations. The present procedure, on the other
hand, is intended for application primarily in the design process to generate rapidly
a large section of a wing-body configuration in an analytic or semianalytic form.

The method uses function averaging rather than point-to-point fairing. Thus, it
produces transition surfaces between two given cross-section shapes that represent at
each station a true analytic blend of the end shapes without the slope and curvature
excursions that are inherent in polynomial fairing. The resulting surfaces, for
smooth input cross sections, should have a degree of smoothness (continuous second
derivatives) sufficient for accurate calculation of flow properties and radar cross-
section parameters.



SYMBOLS

c transformation parameter (egs. (1) and (4))
E exponent function defined by equation (3)
£ transitional transformed shape function at x, defined by equation (2)
f1,f2 single-valued functions of { determined by transforming the initial and
final cross sections, respectively
n parameter in Karman-Trefftz calculation
] complex variable y + iz
X,¥:2 longitudinal, lateral, and vertical coordinates, respectively
a exponent function in equation (3)
me lateral and vertical coordinates, respectively, in transformed plane
A interior angle at corner point
lo} complex variable in transformed plane, n + il
Subscripts:
1 initial station
2 final station
i smallest value
m maximum value
st scaled and translated value
ANALYSIS

The cross—section shapes at two x-stations are assumed to be given, and they are
assumed to be symmetric about the vertical x,z~plane. Each of the symmetric halves
may be represented as a single-valued function y of the vertical coordinate =z (as
shown in the example of fig. 1{a)), or it may .be represented by a more complex shape,
such as that of fiqure 1(b), which might describe a section of a blended wing-body
configuration. More extreme cases, such as a section through a fuselage and wing
with nacelle, could only be treated with much difficulty; therefore, they are not
considered herein. o

If both of the shapes can be represented as single-valued functions of z, then
a smooth transition between them can be computed by the method of reference 1. How-
ever, if at least one of the shapes cannot be represented in such a manner (as that
shown in fig. 1(b)), then the method of reference 1 fails and a new approach is

required.



This approach involves transforming each of the two end shapes by a conformal
mapping into single-valued functions of a similar nature so that they can be easily
combined.

First, the general point (y,z) on each of the end shapes is written as a complex
variable s = y + iz. For this purpose, a proper choice of axes is important. Where
a corner exists, as at the wing tip in figure 1(b), the y-axis is taken through that
point. For a shape like that of figure 1{a), no corner point exists, but there is a
point representing the maximum width, and consequently, the y-axis is taken through
that point.

Various choices of the complex mapping function could be made. The Karmin-
Trefftz transformation (including the Joukowski transformation as a special case) is
normally used because of its versatility and its familiarity as a mapping to open up
and round out a complicated shape. (See ref. 3.) The transformation equation is

1/n

o-¢ \s - nc (1

c+c_(s+nc>
where n and c¢ are parameters to be assigned in accordance with the particular
shapes to be transformed. This transformation is described in detail in reference 4
(sec. 7.32). For a shape with a corner, like that of figure 1(b), the parameter c
is determined by the location of the corner. (Since #nc are singular points of the
transformation, s = nc or s = -nc is a corner location.) The parameter n is
determined by the interior angle A at the corner in the physical plane in accor-
dance with the relation:

]
Il
N
1
Al

For a shape like that of figure 1(a), no singularity point exists on the boundary;
therefore, the singularity of the transformation is taken inside the boundary. An
appropriate location is midway between the point of maximum width and the center of
curvature at that point. For smooth shapes the value of ¢ does not have to be
determined with great precision. The value of n for this cross section (fig. 1(a))
was assumed to be the same as that for the cross section of figure 1(b).

When the transformation is applied to both of the end shapes, the resulting
curves can be represented as single-~valued functions of the vertical coordinate (.
Figure 2 shows, for example, the transformed curves for the cross-section shapes of
figure 1. For this example, the similarity of the transformed curves is quite marked
despite the distinct dissimilarities of the original shapes. In the event that
essengial differences in the form of the transformed shapes exist, then a second
Karman-Trefftz transformation could be applied. BAn example of applying successive
mappings is shown in figure 3 where the initial shape is similar to that in fig-
ure 1(a) but with a discrete concave corner. An initial transformation rounds out
the lower part of the curve, and a second transformation is applied to straighten out
the corner.

In order for the transformed curves to be combined, they must be written as
functions having the same direction on the {-axis. For this purpose, one of the
curves can be translated and scaled as follows. If the domain of the initial func-
tion is C1i < € < &y, and the domain of the other end function is C2i < C < C2m
then a new independent variable for the second curve is defined by



c, - ¢..
_ - _dm 1%
Cst = (¢ CZi)C

+ C
om " C2i

1i

Denote the resulting functions of { as f1(C) and fz(C). Various methods can be
used to combine these two functions. The simplest of these methods is to form a kind
of arithmetic average of the functions. However, experience demonstrates that a
smoother, more aerodynamically desirable surface is obtained when geometric averaging
is used.

Thus, the combination curve at the x-station is given in terms of the end curves

f1 and f2 by the formula
£(x,0) = [f1(C)]E(x)[f2(C)]1'E(X) (X < X < xp)  (2)
where
x. - x\2
E(x) = 2 (3)
X, - X,

and a 1is an arbitrary parameter which may be assigned as a constant or as a smooth
function of x. This parameter provides a means of adjusting the rate at which the
shape changes. If «a 1is a small fraction, E 1is approximately one, except very
near X,. Consequently, the factor containing f1 is dominant except near Koo
Thus, the shape changes slowly near x; from the initial shape (f1). Conversely,
when « is relatively large (>2) the transition is rapid at first with little of the
change occurring near Koy

Values of the transformation parameters n and c¢ are required at each
x-station. They are obtained from the values at the two end stations by a formula
similar to egquation (2).

Figure 4(a) shows an example of a transition curve computed from the shapes
shown in figure 2, together with the transforms of the two end shapes, for compari-
son. For each such transition curve, the corresponding cross-~section shape is
ohtained by transforming the coordinates back to the physical plane by the inverse
transformation, which is

(4)

n
s+ nc_ [+ ¢
s - nc c-c

For the transformed cross sections of figure 4(a), the corresponding physical
plane shapes are shown in figure 4(b).

After the required number of transition cross sections have been computed, the
results can be displayed as a unit, as illustrated in figure 5. If some tailoring of
the calculated transition shape is required, modifications can be accomplished by
varying the parameter o in equation (3). The effect of varying « on the overall
surface is illustrated, for the sample transition, in figure 6. The effect on a
specific cross section, taken at the middle axial station, is shown in figure 7.



Once the transition shapes have all been calculated, they can be independently
scaled for the purpose of attaining a specified axial area distribution or for smooth
matching with the rest of the configuration.

Whether the rest of the configuration has been designed by a similar method or
whether it has been independently specified, the continuity at the Jjoining cross
section is assured by specifying that the final cross section of one section match
the initial cross section of the next. However, the problem of obtaining a smooth
joining involves specific mathematical requirements on the axial scaling and on «a,
which may be treated as a function of x. This problem is not difficult but is out-
side the scope of the present paper.

An example of a blended wing-body missile-type configuration with a top-mounted
inlet is shown, in plan view, in figure 8. An afterbody determined by the end cross
sections of figure 1 was fitted onto a forebody ahead of the inlet. The forebody was
specified to have the initial shape of an ellipse, with a terminal shape like that of
figure 1(a) but without the superimposed inlet.

It is relatively simple to superimpose a specified camber line on the configura-
tion. Since the camber is given as a function of x, the value of the function at
each x-station is simply added to the z-coordinates of the transition cross—section
shapes at that station.

CONCLUDING REMARKS

An analytical procedure has been described for generating smooth transition
surfaces for blended wing-body configurations. Starting from two specified cross-
section shapes, the procedure generates a gradual transition from one cross-section
shape to the other as an analytic blend of the two shapes.

The method used a conformal mapping, with subsequent translation and scaling, to
transform the end shapes to curves that could be easily combined. The example
described was a blended wing-body missile-type configuration with a top-mounted
inlet.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

April 28, 1982
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(a) Half of symmetric cross section representable as single-
valued function y = y(z).

(b) Cross section for which y is not representable as single-
valued function of z.

Figure 1.~ Configuration cross-section examples.



(a) Transform of figure 1(a). (b) Transform of figure 1(b).

Figure 2.~ Transforms of cross-section curves of figure 1.
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(a) Cross section in physical plane. (b) Result of initial (c) Result of second
transformation. transformation.

Figure 3.- Effect of applying successive Karman-Trefftz mappings.
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Final Intermediate Initial

(a) Transformed cross sections.

Figure 4.- Transformed cross sections and corresponding shapes in physical plane.
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Final Intermediate

(b) Physical plane shapes corresponding to transforms of figqure 4(a).

Figure 4.~ Concluded.

Initial
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Figure 5.~ Perspective view of surface generated as a transition between the
cross-section shapes of figqure 1.
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Figure 6.~ Influence on configuration shape of varying parameter
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Figure 6.- Concluded.
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1.0. (b)

Figure 7.- Effect of varying

a

= 2.0, (c¢) «a

¢ on midstation cross-section shape.
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Figure 8.~ Transition section smoothly fitted on to forebody.
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